10. MATHS EDUCATION

(a) Algebra & Vector Analysis (Math. Ed. 331) Exam 2068

Miles .		Group A
Attomnt	ALL the questions. Tick (1) th	best answers.
4 M	hich of the following is an algeb	alo ou war
1. W) (N, +)	
) (1,-)	d) all of the above
	? In the following is frue?	
	V - 4-manacition is always an ev	en permutation
а	b) a transposition if always an od	permutation
t t	a transposition is even and od	both permutation
	d) the identity permutation is also	a fransposition
	d) the identity permutation is also	action?
3.	Which of the following is a trivial	action? -empty set then the action ϕ : G × A \rightarrow A is defined by ϕ (g,a) = ga
2.1	a) G be a group and A be a non	-clipty sol all the second sec
	=a∀g∈G,a∈A.	nen the action $Z \times Z \rightarrow Z$ is defined by $φ(z,a) = z + a ∀ z$, $a ∈ Z$ He hand E^* (set of all non-zero elements of E) then the action $φ$: E^*
	b) If Z be the group of integers t	nen the action 2 × 2 Propage elements of E) then the action ϕ : F*
200	LIVE - PURCEUT CHACO OVER A TH	IC Failu F (Sec of all first
	$x V \rightarrow V$ is defined by $\phi(s)$	() = SV∀S∈F*, V∈ V
0.80.00	" of the above	
· 4.	Which of the following is not true	statement?
7.	LE PROUD OF DRIME OFGET IS	CVCIIC
100	b) If G is finite group of order in c) A finite group of prime order	nas no proper subgroups
	d) all of the above	
	Which of the following may not	be the 4 order of a simple group?
5.	a) 2	
		d) 5
	Which of the following is the co	rrect statement?
6	A relation of icomorphis	n in the set of groups, is
	h) avery finite cyclic group IS IS	omorphic to (2, 1)
	all shore exists at least one su	ogroup of (2, +) which is the
	Which of the following group is	-Cyclic:
7.	a) Z ₉ × Z ₁₄	
F 1		d) all of the above
14.2	c) 215 × 228	on defined by ab = 0 ∀a, b ∈ R is called
8.	A ring (R,+, .) With multiplicate	b) trivial ring
	a) zero ring	d) ring without zero divisors
100	c) division ring The characteristics of the ring	(R + 1) of real numbers is
9.		, b)1
100	a) 0	d) ∞
	c) 2	e following is maximal ideal in R?
10.		b) R
	a) {0}	n u serieta no mavimal ideal MR
	c) an ideal M s,t. M≠ R	d) there exists no maximum coordinate u and u are u and u and u are u and u and u are u are u and u are u and u are u are u and u are u are u and u are u and u are u are u are u and u are u are u and u are u are u and u are u are u are u are u are u and u are u are u are u and u are u and u are
11.	If R be a commutative integ	ral domain and a, b, d e it alon
,	true?	
	a) a b, iff(b) < (a)	
	b) a and b are associates, it	t (a) = (D)
z s	c) ulr ∀ r∈R	
	d) "a is an associated of b" i	s an equivalence relation on R
12	Let R be a Euclidean doma	s an equivalence relation of the following is true? n and a (≠0)∈R then which of the following is true? b) d(l) ≤ d(a) ∀a∈R
14	a) $d(a) \le d(l) \ \forall a \in \mathbb{R}$	D) a(1) ≥ u(a) ∨ a ∈ 1

	* · · · · · · · · · · · · · · · · · · ·	
	c) d(a) = d(l) ∀a∈R	d) none of the above.
13.	Which of the following is the remainder whe	d) none of the above.
	3x4 - 5x3 + 10x2 + 11x - 61 divided by x - 3	?
	a) –61	b) 77
	c) 22	d) 170
14.	The number of negative roots of the equation $x^5 + x^3 - 2x^2 + x - 2 = 0$ cannot exceed	
	a) 0	b) 2
	c) 3	d) 4
15.	Which of the following statements is true?	
	a) every finite extension on E of a field F is a	an algebraic extension of 5
	b) the filed K of real numbers is a finite exte	nsion of R its / and F
	c) the field C of complex numbers is a finite	extension of R of real numbers
	d) all of the above	
16.	If A is non-singular square matrix then which	of the following is not true?
	a) A-1 also non-singular	b) A ≠ 0
	c) (A-1)-1 = A-1	d) $(A^n)^{-1} = (A^{-1})^n$
17.		u) (A'') '' - (A'')"
		space V over the field F then W ₁ W ₂ is a subspace o
	a) W ₁ = W ₂	b) W₁∪W₂ is a subspace of W₁⊂W₂
	c) W₂⊂W₁	d) all of the above
8.	Let V be real vector space3 and u , v , $w \in V$ a necessary condition for the scalar product on	and c is the real number. Which of the following is not a
	a) $\langle u, v \rangle = \langle v, u \rangle$	b) $\langle u, v + w \rangle = \langle v, u \rangle + \langle u, w \rangle^c$
	c) $\langle cu, v \rangle = c \langle u, v \rangle$	d) $\langle u, v \rangle \ge 0$
9.	B v ha vastast v t v v	200 BBC 100 100 100 BBC 100 BB
3.	If v be vector function of a scalar variables	t then v is said to be irrotational if
1/4	a) grad $\overrightarrow{v} = 0$	b) div $\vec{v} = 0$
	\rightarrow	B 44
	c) curl $\overrightarrow{v} = 0$	d) v is a constant function
0.	If \vec{i} , \vec{j} and \vec{k} are the orthogonal unit vec?	ctors then which of the following is the reciprocal of \overrightarrow{v}
	→	TO STATE OF THE SECOND OF THE
	a) i	b) 7
	c) k	d) \overrightarrow{j} and \overrightarrow{k} both
ttem	pt ALL the questions.	
	Grou	p 'B' 8×7=56
	Define cyclic group. Prove that the set of cube multiplication operation.	e roots of unity forms a cyclic group with respect to the
	Let G be group and H be subgroup of G K a r	normal subgroup of G. Prove that H ~ HK

- 2. OR

- If G1 and G2 be two cyclic groups of order m and n respectively, prove that G1 × G2 is cyclic if and only if m and n are respectively prime.
- Prove that every finite integral domain is field. 3. .
- Define ring homomorphism. If $f: \mathbb{R} \to \overline{\mathbb{R}}$ be ring homomorphism of \mathbb{R} into $\overline{\mathbb{R}}$, then prove that F is 1-1 if and only if ker. $f = \{0\}$ OR
 - Define irreducible element in an integral domain. Prove that every associate of an irreducible element of an integral domain R is irreducible.
- Define polynomial equation. Show that the equation $x^5 + x^3 - 2x^2 + x - 2 = 0$ has at least one pair of imaginary roots.

```
Let F, E and K be fields satisfying F \subseteq E \subseteq K. If [K : E] and [E : F] are finite, prove that [K : F] is
6.
        finite and [K:F] = [K:E][E:F]
OR
        If A and B be two matrices conformable for the sum and product then show that (AB)<sup>T</sup> = B<sup>T</sup>A<sup>T</sup>.
        Define direct sum of subspaces of a vector spaces. Prove that vector space V is the direct sum of
7.
        its subspaces U and W if and only if
        (i) V = U + W and
        (ii) U \cap W = \{0\}
        If a , b , c be three non-coplanar vectors such that
8.
         a = a_1 I + a_2 m + a_3 n, b = b_1 I + b_2 m + b_3 n and c = c_1 I + c_2 m + c_3 n prove that
         \begin{bmatrix} \overrightarrow{a} \xrightarrow{b} \overrightarrow{c} \end{bmatrix} \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_3 & c_3 \end{vmatrix} \begin{bmatrix} \overrightarrow{b} \xrightarrow{b} \overrightarrow{d} \\ \downarrow m & n \end{bmatrix}
                                                       Group 'C'
         Prove the following
9
         (i) Let (G,0) be a finite group and (H,0) be a subgroup of G, then 0(H) divides 0(G).
         (ii) A finite group of prime order has no proper subgroup.
         Prove that every principal ideal R is a unique factorization domain.
 10.
 OR
         Let V be a vector space over the field F and (v1, v2, .......vn) be a basis of V. If w1, w2,....
         elements of V within n > m, prove that w_1, w_2, \dots, w_n are linearly independent.
                                                      Exam 2069
                                                                                                                         20
                                                        Group "A"
 Attempt all the questions. Tick (v) the best answers
          If (G,o) be a group and a, b, c ∈ G, which of the following property is not true?
                                                               b. (a o b)-1=a-1
          a. (a-1)-1=a
          c. (a o b)2=a2 o b-1 \forall a, b \in g \Rightarrow G is abelian d. a2=e \forall a \in G \Rightarrow G is abelian
          Which of the following is true?
 2.
          a. The product of two even permutations is an odd permutation
          b. the product of two odd permutation is an even permutation
          c, the product of an even permutation and an odd permutation
          d. A transposition is always an even permutation
          Which of the following element of S3=1(11(123), (132), (12), (13) 1 is not its own inverse?
                                                               b. (23)
           a. (12)
                                                               d. (123)
           c. (13)
           Which is the following statements is true?
           a. If H is a subgroup of a group G than (H)=H
           b. If A and B are two subsets of a group with A ≤ then (A)<(b)
           c. The subgroup generated by two distinct elements of order 2 in S<sub>3</sub> is all of S<sub>3</sub>
           d. All of the above
           Which of the following may be the order of non-abelian group?
  5.
                                                                b. 5
           a. 6
                                                                d. 3
           Let G be a group acting on set S and s is some fixed element of S then the set Gs={g∈ G: g s=s} is
   6.
           called
                                                                b, stabilizer of s
           a orbit of G
                                                                 d. centralizer of s
           c, normalizes of s
           Which of the following wing rroup is cyclic?
   7.
                                                                 b. Z2×23
            a. Z2×Z4
                                                                 d. Z3×Zs
            Which of the following rings is an integraldomain?
   8.
                                                                 b, the ring of residue classes modulo 5
            a, the ring of residue classes modulo 4,
                                                                 d, the ring of residue classes modulo 9
            c, the ring of residue classes modulo 6
            The ring(R,+,-) satisfying a ∀a ∈ R is called
    9.
                                                                 b. nilpotent ring
            a. idempotent ring
```

c. Boolean ring d. trivial ring

Which of the following is, true, statement?

a. Every subring of a ring R is an ideal of R b. Every ideal of a ring R is a subring of R c. The product of two ideals of a ring may not be an ideal

d. If I is a proper ideal of a ring R then every element of I has multiplicative inverse.

11. Let R be a commutative integral domain and let a, b, u R then which of the following is true? a. a/b iff (b)c/a/

c. u is unit iff (u)=R

10.

14.

b. u is unit iff $u/\forall \alpha \in R$ d. all of the above

Let R be a commutative raing with regular elements. Let S be the set of all regular elements in R then which of the following is true?

a. R is embeddable in R.

b. each element of R is invertible in R.

c. each element of Rs is of the form r-1 s where ∈ R, S ∈ S d. R. is a field

Which of the following is not the symmetric functions of the roots $\alpha.\beta$ and y of the equation 13. x3+px2+ax+r=0?

 $a \cdot \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

b. $\frac{\beta^2 + \gamma^2}{\beta + \gamma} + \frac{r^2 + \alpha^2}{r + \alpha} + \frac{\alpha^2 + \beta^2}{\alpha + \beta}$

c. \a2\beta + \b2y + y2\a

The polynomial a 2+2 R is[x]

a, reducible over 93 c. reducible over C

b. reducible over Q

d. reducile over R and C both

If is a unit matrix then which of the following is true? 15.

a. I is a triangular matrix

b. I is a diagonal matrix

c. I is a scalar matris 16.

d. all of the above Let V be a vector space of all 2×3 matrices over the real field R. Then dim V is equal, 10

c. 5

d. 6

Which of the following pairs of vectors in 92 are not linearly independent? 17. a. (a, 2) and (2, 1) b. (1, 0) and (0, 1)

c. (a', 3) and (3.1)

d. (a, 2) and (2, 4)

18. Which of the following vectors in %3 is perpendicular to the vector (1, 2, 3)? a. (1, 2, 3) b. (2, 2,-2)

d. (2, -2, 2)

Which of the following is the condition for the vector if to have a constant direction? 19. a. (0, 1) b. (0, 0)

c. (0, 9)

d. (0, 8)

20. If $1 \int = (x+y+1) \int (-x-y)k$ then which of the following is div f?

a. 0

b. 1

c. 2 Attempt all questions.

OR

2.

d. i f+k

8×7=56

1.

Group "B" Define Aelian group. If G be an Aelian group and n be an integer, provethat (ao) =1 √α, b ∈ G.

Define permutation group. Prove that the set S. diffreemulations on a symbols is a group w.r. to the permulation multiplication

Let (H,o) and (H₂ 0) be two subgroups of a group (g.o). Prove that (H₁ U H₂ o) is also a sugroup if and only if H₁ ⊆H2 or H2 ⊆ H1.

3. If f: R → R be a ring homomorphism of R into R prove that (i) (0)O=where 0 and 0 are the zero elements of R and respectively. (ii) f(-a)=f(a) $\alpha, \in R$.

Let R be an Euclidean domain and a0) c-R. Thenprove that

 $d(I_R) \le d(a) \ \forall \alpha \in R$

(ii) d(a)=d(ir) iff a is aunit in r.

5. Define primitive polynomial. If the primitive polynomial f(x) can be factored as the product of two polynomials having rational coefficients then prove that it can be factored as the product of two polynomials having integral coefficient.

- Discuss transformation of an equation. Transform the equation x-6x2+4x-7=0 into one which lacks 6.
- Prove that a non-empty subsct Uof a vector space V over the field F is a subspace of V if and only if 7. (i) u_1 - $u_2 \in U \forall u_1, u_2 \in U$ (ii) $u \in U_1 s F \Rightarrow s \in u$.
- OR Define orthogonal vectors. Prove that a set (u1, u2 ... un) of non-zero orthogonal vectors of a vector space V over a field F is linearly inderpendent,
- show that the necessary and sufficient condition for the vector a of a scalar variale t to have a

constant direction is $\frac{d}{dt} = 0$

9

Group "C"

2×12=24

State and prove the third isomorphism, theorem on groups

Let $(G_1 \times G_2, .)$ be the direct product of the groups (G_1, o) and (G_2, o_2) then prove that

i. $\overline{G_1} = \{(g_1, e_2)|g_1 \in G_1, e_2 \text{ is the edentity element of } G_2\}$ and $\overline{G_2} = \{(e_1, g_2)|g_2 \in G_2, e_1 \text{ is the } G_2\}$ edentity element of G₁} are normal subgroups of (G₁ × G₂)

ii. $(G1) \cong (G_1,O_1)$ and $(G_2,...) \cong (g_2,O_2)$

iv. Each $g \in G_1 \times G_2$ is uniquely expressed as g_1^1, g_2^1 where $g_1^1 \in \overline{G_1}, g_2^1 \in \overline{G_2}$

Discuss the consistency of simultaneous equations. Test the consistency and solve the following:

a.x+y+z=6 x + 2y - 3z = -4-x - 4y + 9z = 18 b.x - 4y + 7z = 83x + 8y - 2z = 67x - 8y + 26z = 31

Exam 2070 Group 'A'

[20]

Attempt ALL the questions. Tick (√) the best answers.

Which of the following is not a binary operation on the set Q of rational numbers?

a. +

C. X Which of the following statement is true?

- If G be a group and a ∈ G then o (a) = o (a-1)
- If a is a generator of a group G then a-1 is also a generated of G.
- If a, b, c be the elements of a group (G, o) then (a.b.c.)-1 = c-1.c-1.b-1.a-1
- All of the above
- Let G be a group the action ϕ : G ×G defined by $\phi(g, a) = gag-1$, $\forall g, a \in G$ is called
 - a, trivial action

b. conjugation

d. general action c. complement

If the vertices of a square represented by 1, 2, 3, and 4 be as shown in the figure then which of the following is not an element of D4?

b. (1234) a. (13)

- d. (24) If G is a group of order 6 and N is a normal subgroup of G of order 2 then which of the following is 5. the index of N in G? b. 3
 - a. 2

d. 2 and 3 both c. 6 Which of the following is the Cayley's theorem? 6.

- The order of a subgroup of a finite group is a divisor of the order of the group
- If H and K are finite subgroups of a finite group G then

 $0 \text{ (HK)} = \frac{0(H)0(K)}{0(H \cap K)}$

Every finite group is isomorphic to a group of permutations.

Any two cyclic groups of same order are isomorphic.

7. If G = G1×G2 is an internal direct product of the normal subgroups G1 and G2 then which of the following is true?

 $b.\frac{G}{G_1} \cong G_2$

 $d.\frac{G}{G_1} \cong \frac{G}{G_3}$

Which of the following ring has no unit element? 8.

a. (z, +, ')

b. (2z, +.')

c. (C, +, .)

d. The ring of residue classes modulo - 5.

9. The characteristic of the ring of residue classes modulo 6 is

a. 0

b. 2

d. 6 Let Z be the ring of integers, then which of the following is a maximal ideal in Z? 10.

a. 27

b. 3Z

c. 57

d. All of the above.

- Which of the following is not true? 11.
 - Every principle ideal domain is a unique factorization domain.

Every unique factorization domain is a principle ideal domain.

Every equation of an odd degree whose constant term is negative has at least two real roots of opposite signs.

The number of negative roots of the equation f(x) = 0 can not exceed the number of changes of signs in the terms occurring in f(x).

12. In Which of the following, R-(0) is a regular multiplicative set?

a. R is a ring

b. R is a ring without unit element

c. R has no zero divisors. Which of the following is true? 13.

d. R is an integral domain

- - If $a+ib(b\pm 0)$ is is a root of f(x)=0 then a-ib is also a root of f(x)=0
 - Every equation of an even degree has at least one real root of the sign opposite to that of its constant term.
 - Every equation of an odd degree whose constant term is negative has at least two real roots of opposite signs.
 - The number of negative roots of the equation f(x)=0 can not exceed the number of changes of signs in the terms occurring in f(x).
- 14. Which of the following field is a prime field?

a. The field C of complex numbers.

b. The field R of real numbers.

c. The field Q of rational numbers. d. None of the above

15. If V be a vector space with a scalar product (u, v) and the norm ||u|| = (u, u) 1/2 then which of the following is the Cauchy in equality?

a. ||C u|| < |C| ||u|| for any C ∈ R

b. |<u,v>| < ||u|| ||v||

c. ||u+v||<||u|| + ||v|| d. $(u, v + w) \le (u, v) + (u, w)$

16. Let V and W be two vector spaces over the same field F and f:V →W be a transformation, then which of the following is true?

f is one-one if and only if imf = (0)

- b. f is one-one if and only if ker $f = \{0\}$
- f is one-one if and only if f maps V onto W.
- f is onto if and only if f is one-one.

Let A = $\begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$ and let X = $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, Y = $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ then t_{XAY} is equal to a. $x_1y_1 + 2y_1x_2 + 2y_1x_3 + 2y_2$ b. $x_1y_1 + x_1y_2 + 2y_2x_3 + 2y_3x_4 + 2y_3x_5 + 2y_5x_5 +$ 17.

b. x1y1+x1y2 + 2y1x2+3x2y2

C. X1V1+3X1V2+2X2V2

d. X1V1+X2V2

If and be any three vectors in space then which of the following is true?

a.
$$\begin{vmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{vmatrix} = \begin{vmatrix} \vec{c} \cdot \vec{a} \cdot \vec{b} \end{vmatrix}$$

d. $\begin{vmatrix} \vec{a} \cdot \vec{b} \cdot \vec{c} \end{vmatrix} = (\vec{a} \cdot \vec{c}) \times \vec{b}$

b.
$$\begin{vmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{vmatrix} = \begin{vmatrix} \vec{a} \ \vec{c} \ \vec{b} \end{vmatrix}$$

d. $\begin{vmatrix} \vec{b} \ \vec{a} \ \vec{c} \end{vmatrix} = -\vec{b} (\vec{a} \times \vec{c})$

If $r = a\cos t + b\sin t + ctk$ then which of the following is the value of $\frac{dr}{dt}$ at t = 0? 19.

c. - ai + ck

d. -asinti + bcosti

A linear transformation T:V → W is said to be nonsingular if 20. b. Im T = (0) a. Ker T = {0}

d KerT=V

c. ImT = W

Group 'B'

18×7 = 561

Attempt ALL the questions

Define group with example. Prove that the order of a cyclic group is the same as the order of its generator.

OR

Define subgroup of a group with example. Prove that every finite group of composite order possesses a proper subgroup.

Define group homomorphism, Let f: G → G be a group homomorphism of G onto G and let K 2. = ker f. Prove that G is isomorphic to G.

Let G - G₁ ×G₂ be an internal direct product of the normal subgroups G₁ and G₂ of G. Prove that G. $\approx G_1$ and $\frac{G}{G} \approx G_2$.

Define prime ideal. Prove that an ideal P in a ring R is a prime ideal if and integral domain.

OR

Let L is a finite extension of a field F and K is a subfield of L which contains F. Prove that [K:F] is a divisor of IL:F1

Test for consistency and solve the following equations. 5.

$$x + 2y - z = 3$$

$$3x - y + 2z = 1$$

$$2x - 2y + 3z = 2$$
.

OR

Prove that the rank of the product matrix AB of two matrices A and B cannot exceed the rank of either A or B.

Define maximal set of linearly independent vectors of a vector space V. Prove that the maximal set 6. of linearly independent vectors of V is a basis of V.

Discuss the singular and non-singular transformations. Prove that the inverse of a linear 7. transformation is linear.

Define Gradient, divergence and curl, if $f = x^3 + y^3 + z^3 - 3xyz$ find div (grad f) and curl (grad f). 8. [2×12 = 24] Group "C"

Define permutation group and alternatively group. 9.

If S be a set of n symbols, then prove the followings: (i) every f ∈ S_n can be expressed as a product of disjoint cycles.

(ii) the set An of all even permutations is a subgroup of S_n and $O(A_n) = \frac{m}{2}$.

OR

Define group action with example. Let G be a group acting on a non-empty set A. The relation on A is defined by a \sim b if and only if a = g.b for some $g \in G$ is an equivalence relation. Further more for each $a \in A$; the number of elements in the equivalence class containing a is $[G_1,G_{n1}]$ the index of the stabilizer of a. Prove it.

Let a, b and u be elements of a commutative integral domain with identity then prove the following: 10.

(i) a/b/ if and only if (b) < (a)

(ii) a and b are associates, if and only if (a) = (b)

(iii) u is unit in R if and only if u/r ∀ r ∈ R.

Exam 2071 Group "A"

Attempt ALL the questions. Tick (√) the best answers.

The set G = {1, w, w²} forms a cyclic group under multiplication generated a.1 b. w

C W2 d. w and w2 both

The order of symmetric group is not of degree n is

c. n

2.

d. (n-1) !

Which of the folio following is not true?

The product of two even permutations is even permutation.

The product of two odd permutations is even permutation. b.

The product of an even and an odd permutation is even permutation.

A transposition is always are odd permutation.

What is the order of an identity element of a group G? 4. a. 0

c. 2

d. infinite

A homomorphism $\phi: G \rightarrow G'$ is called epimorphism if 5.

a. o is one-one

b. d is onto

c. o is one-one and onto

d, all of the above

6. If G is a finite group and H is a normal subgroup of G, then which of the following is true?

a. 0 (G/H) = $\frac{o(G)}{o(H)}$

b. o (G/H) = o (G) o (H)

c. o (G/H) = $\frac{o(H)}{o(G)}$

d. o (G/H) = o (G) + o (H)

if $P = \begin{pmatrix} 1234567 \\ 3125647 \end{pmatrix} \in S_7$, which of the following is orbit of 4?

a. (234)

b. (345)

c. (567)

9.

d. (456)

8. Which of the following statement is false?

a. The set (Q, +, •) is a division ring

b. The set (R, +, *) is a division ring

c. M2 (R) is a division ring

d. The set (Z, +, *) is not a division ring

A commutative division ring is called a. an integral domain

b. a skew field

c. a field

d. a Boolean ring

10. An element of a ring (R, -, •) is said to be nilpotent if then exists a positive integer n such that a. an = 0 b. an = 1

C. an = a

d. an = a2

11. Which of the following statement is true?

a. Every Euclidean domain R has a unit element

b. Every Euclidean domain is a principal ideal domain

c. Every irreducible element of UFD is a prime

d. All of the above

12. The characteristic of the field of real numbers is

a. 1

b. 2

c. 0

d. ∞

13.	If α , β , and γ be the roots of an equation of defunction?	and all all had been been all all and the second
	$a.\alpha\beta+\beta\gamma+\gamma\alpha$	b. $\alpha^2 + \beta^2 + \gamma^2$
77	c.α+β+γ	d. $\alpha^2\beta + \beta^2\gamma + \gamma^2\alpha$
14.	What is the rank of the matrix $\begin{pmatrix} 2 & 3 & 4 \\ 4 & 6 & 8 \end{pmatrix}$?	The state of the s
	a. 0 c. 2	b. 1 d. 3
15.	ff X = (1, 2) and Y = (3,4) be any t a. 24	wo vectors in \Re^2 , what is the value of X Y? b. 11
	c.21	d. 10
16.		in R ² , what is the scalar projection of Q onto P?
	a. 3	$_{\rm c}$ and ${\bf b}$. The electrony data wave to substantial $_{\rm c}$
	√5	6
	$a. \frac{3}{\sqrt{5}}$ $c. \frac{\sqrt{3}}{5}$	$d.\sqrt{\frac{3}{5}}$
		ned by $T(x, y) = (x + y, y)$ for $(x, y) \in \mathbb{R}^2$, then kernel of
17.		given by
	T is a. {(0,0)}	b. ((1,0))
	The Att with the Att and the A	d. ((1,1)
18.	A set of vectors (u1, u2, u3,, un) in a real vec	ctor space V is said to be orthonormal if
10.	a. <u, u=""> = 0 for i≠ j</u,>	b. <ui, u=""></ui,> = 0 for i = j
	c. <ui, u=""> = 1 for 1 ≠ j</ui,>	d. <u,, u=""> = 1 for i = j</u,,>
19.		
	a. ∇ .a™ = 0	b. a [™] = 0
	c. ∇a™ = 0	d. ∇ × a™ = 0
20.	The state of the s	What the case to come
20.		b. $I^{\text{TM}} \cdot \frac{\partial V^{\text{TM}}}{\partial x} + J^{\text{TM}} \cdot \frac{\partial V^{\text{TM}}}{\partial y} + k^{\text{TM}} \frac{\partial V^{\text{TM}}}{\partial z}$
	a. i^{TM} . $\frac{\partial v^{TM}}{\partial x} + j^{TM}$. $\frac{\partial v^{TM}}{\partial y} + k^{TM}$. $\frac{\partial v^{TM}}{\partial z}$	∂x → ∂y
1.5%	C ITM X OVTH + ITM X OVTH + KTM . OVTH	
1	C IM X + IM X - + KIM	The state of the s

Attempt ALL the questions.

· Group "B"

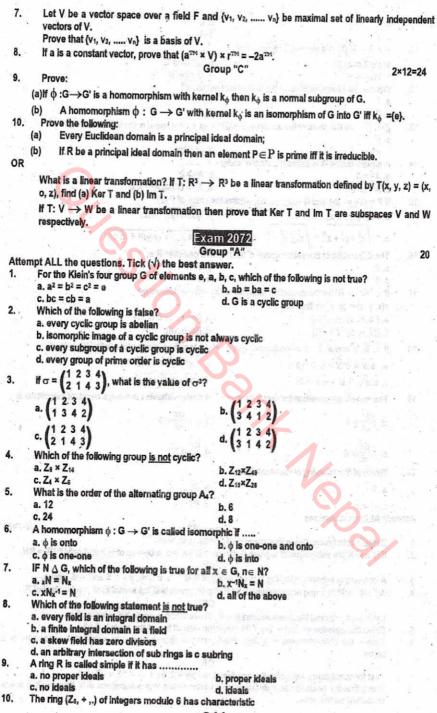
8×7=58

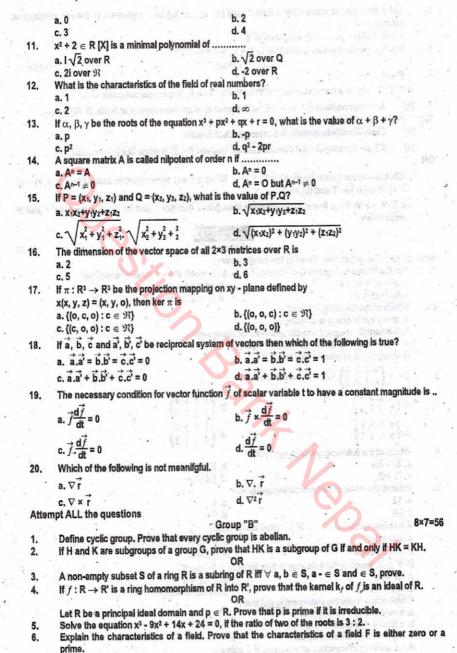
- Define commutative group with an example. If (G, *) be a group such that (a * b)² = a² * b² for all a, b
 ∈ G, prove that G is commutative.
- Define normal subgroup of a group G. If Ni and N2 are normal subgroups of a group G, prove that N₁○N₂ also a normal subgroup of G.

OR

Prove that the normalizer N(a) of any element a of a group G is a subgroup of G.

Define integral domain. Prove that every field is an integral domain.


Prove that in a commutative ring R with unity, and ideal M is maximal iff R/M is a field.


OR

Prove that if $f:R\to R'$ is a ring homomorphism of R into R' then the kernel k_f of f is an ideal of R.

- 5. If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of (i) α^2 , β^2 , γ^2 and (iii) $\frac{1}{a} + \frac{1}{b} + \frac{1}{a}$.
- Explain algebraic extension of a field F. Prove that every finite extension K of a field F is algebraic extension of F.

OR Test for consistency and solve the equations x-2y+3z=2, 2x-3z=3, x+y+z=0.

Test for consistency and solve the equations 3x - 4y = 2, 5x + 2y = 12, x - 3y = 1. Prove that the union of two subspaces of a vector space V is a subspace of V if and only if one is

٥.	o. Prove that the necessary and sufficient condition for	or a vector function a of scalar variable t to have
	a constant direction is $\vec{a} \times \frac{d\vec{a}}{dt} = 0$.	The state of the s
	dt - 0.	
9.	Group "C'	2×12 = 2
9.		
	N ₁ , N ₂ ,N _n of a group G. If G be the internal di	rect product of normal subgroups N ₁ , N ₂ ,N
10		
	 Define Euclidean domain and show that the set of ir (a) Every Euclidean domain is a principal ideal domain 	tegers is an Euclidean domain. Also prove that
	(b) Every Euclidean domain R has a unit element.	aln.
10.	10. (a) Prove that a set of non-zero orthogonal vector	Line and the second
	(b) If T: V → W be a linear transformation the	n prove that Ker T and Im T are subspace of
-	and W respectively.	i prove that Ker I and Im I are subspace of
2	(b) Advanced Calculus (Math. E	d 333) Flactive Crown A
	Exam 206	a. 555) Elective Group A
	Group "A"	make with the la
Atte	Attempt ALL the questions. Tick (√) the best answers.	20
1.	1. The improper integral $\int_{-\infty}^{\infty} \frac{dx}{(x-a)^n}$ converges if and only	A STATE OF THE PARTY OF THE PAR
-	(X-a) a soliverges if alld offi	y n
1 % =		
	a, n > 1 b, n < 1	c. n = 1 d, n ≠ 0
2.	The state of the s	
	 a. point wise convergence ⇒ uniform convergence 	
	 b. uniform convergence ⇒ point wise convergence 	그 일본 내 내 내 내 내 내 내 내 내 내 내 내 내 내 내 내 내 내
	c. non-point wise convergence ⇒ non- uniform conve	ergence
2	d. all of the above	
3.		for all values of θ and 0 < r < 1?
	a. 21" cos no p. 2 m sin no c. 2	r cos2nA d all of the above
4.	The series $\sum \frac{a_n x^n}{1 + x^{2n}}$ converges uniformly for all real v	values of v if
will a		is absolutely converbent
		the above
5.	In which of the following condition the series $\sum \frac{\cos_n q}{n^p}$	us uniformly and absolutely convergent for all
	real values of 0?	The sacrificity convergent for all
		Control of the second second
6.		of d. P≥1
	a. fx is continuous at (a, b)	be differentiable at (a, b)?
	b. f _x exists at (a, b)	Martin affiliation of a second
	c. f _x exists at (a, b)	
관심	d. f _x is continuous at (a, b) and f _y exists at (a, b)	
7.	T(a, b) is an extreme value of f(x, v) if f(a, b) = 0 f (a b	o) and
	a. $I_{xx}(a, D)$. $I_{y}(a, D) - [I_{xy}(a, D)]^{2} < 0$ b. f., (a.	b), $f_{yy}(a, b) - [f_{xy}(a, b)]^2 = 0$
8.	. or it, y = 2x = xy + 2y ; what is the value of f. (1, 2)?	· 图图 图 · A 图 4 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·
		d. 0
9.	Which of the following is equal to $\frac{\partial (y_1, y_2, \dots, y_n)}{\partial (x_1, x_2, \dots, x_n)}$?	
,	∂(x₁, x₂,x₁)	THE COLUMN TO SECURE AS A SECURE OF THE SECU
	a. $\frac{\partial (y_1, y_2, \dots, y_n, x_{m+1}, \dots, x_n)}{\partial (y_1, y_2, \dots, y_n)}$ b. $\frac{\partial (y_1, y_2, \dots, y_n)}{\partial (y_n, y_n, x_n)}$	n, Ym+1,,Xn)
	∂(X1,X2,	Xn,Xm+1,,Xn)
	$\begin{array}{c} a. \frac{\partial (y_1,y_2,\ldots,y_n,x_{m+1},\ldots,x_n)}{\partial (x_1,x_2,\ldots,x_n,x_{m+1},\ldots,x_n)} b. \frac{\partial (y_1,y_2,\ldots,y_n,x_{m+1},\ldots,x_n)}{\partial (x_1,x_2,\ldots,x_n,y_{m+1},\ldots,x_n)} c. \frac{\partial (y_1,y_2,\ldots,y_n,x_{m+1},\ldots,x_n)}{\partial (x_1,x_2,\ldots,x_n,y_{m+1},\ldots,x_n)} \end{array}$	$\partial(x_1, x_2, \dots, x_m)$
	(A1,A2,,An,Ym+1,,Xn)	" ∂(y ₁ ,y ₂ ,y _m) .

If the function f, f₁, f₂ of x and y are integrable on a rectangle R, then which of the following is not

a.
$$\iint\limits_{R} |f| \, dx \, dy \le \iint\limits_{R} f \, dx \, dy|$$

b.
$$\iint\limits_{R} (f_1+f_2) \, dx \, dy = \iint\limits_{R} f_1 \, dx \, dy + \iint\limits_{R} f_2 \, dx \, dy \, sz$$

- c, the product f1, f2 is integrable over R
- d, the quotient $\frac{f_1}{\epsilon}$ is integrable over R, if $|f_2| \ge 0$ or R
- Which of the following theorem is different from others?
 - a. Gauss's theorem
 - b. Divergence theorem
 - c. Second generalization of Green's theorem
 - d. Stoke's theorem
- if $\int R f dx dy$ and $\int b f dx$ both exist, then the double integral can be expressed as 12.

a.
$$\iint R f dx dy = \int_{a}^{b} dy \int_{c}^{d} f dx$$

b.
$$\int R f dx dy = \int_{0}^{c} dy \int_{0}^{c} f dx$$

$$\int_{0}^{d} R f dx dy = \int_{0}^{d} dx \int_{0}^{d} f dy$$

c.
$$\iint Rf dx dy = \int dx \int f dy$$

d.
$$\iint R f dx dy = \int dx \int f dy$$
c a

in spherical polar co-ordinates, the volume of a solid is given by

a.
$$\int \int \int r^2 \sin\theta \ dr \ \theta \ d\varphi$$

b.
$$\int \int \int r^2 \sin^2 \theta \, dr \, d\theta \, d\phi$$

c.
$$\int\!\int\!\int r^2\cos\theta\;dr\;d\theta\;d\varphi$$

d.
$$\int \int \int r \cos \theta \, dr \, d\theta \, d\phi$$

- Which of the following is not true? 14. b. every closed interval is a closed set a. every closed sphere is a closed set d, every open sphere is a closed set c, every finite subset of a metric space is closed
- Which of the following is the diameter of empty set 6? 15.

If (X, d) be a metric space and A, B be subsets of X then which of the following in not true?

16. a. $f_r(A) = A \cap (A)^c$ b. $F_r(A) = A - int A$

$$d. f_r(A \cap B) \subseteq F_r(A) \cup F_r(B)$$

- c. A (A) int A If (X, d_1) and (Y, d_2) be any two metric spaces then f: $X \rightarrow Y$ is continuous if and only if 17.
 - a. (1 (G) is closed in X. Wherever G is open in Y
 - b. (1 (G) is closed in X, Wherever G is open in Y c. (1 (G) is closed in X, Wherever G is closed in Y
 - d. (1 (G) is closed in X. Wherever G is intersected in Y
 - A subset A of a compact metric space (X, d) is itself compact if and only if
- 18. a. it is open in (X, d) b. it is closed in(X, d) d, it is bounded in (X, d) c. it is compact in (X, d)
- Which of the following represents the first backward differences in difference table at the argument x 19.

a. $\Delta f(a)$ b. $\Delta f(afh)$ c. ∇f(a) d. Vf(afh) What is the degree of the approximation polynomial to the Trapezoidal rule? 20.

> Attempt ALL the questions. Group 'B'

8×7=56

d. n

Define absolute convergence of $\int f dx$. Show that the integral $\int \frac{\sin x}{x^p} dx$ is convergent for P > 0. 1.

If a sequence $\{f_n\}$ converges uniformly in [a, b], and x_0 is a point of [a, b] such that $\lim_{x \to x_0} f(x) = \int_{x \to x_0}^{x} f(x) dx$ 2. $a_n(a=1,2,...)$ then prove that (i) $\{a_n\}$ converges (iii) $\lim_{x\to x_n} f(x) = \lim_{n\to\infty} a_n$

State Abel's test for uniform convergences of series of functions.

Show that the series $\sum \frac{(-1)^n}{n} |x|^n$ is uniformly convergent in $-1 \le x \le 1$.

If a power of series $\sum a_n x^n$ converges at the end point x = R of the interval of convergence (-R,R), 3.

then prove that it is uniformly convergent in the closed interval [0,R].

State the sufficient condition for differentiability of function of two variables. Show that the function

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{if } (x^2 + y)^2 \neq 0 \\ 0, & \text{if } x = y = 0 \end{cases}$$

is differentiable at the origin? If the roots of the equation in λ ,

OR

5.

OR

8.

 $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$ are u, v, w. prove that

$$\frac{\partial(u, v, w)}{\partial(x, y, z)} = -2 \frac{(y - z)(x - x)(x - y)}{(v - w)(w - u)(u - v)}$$

If (X_1, d_1) and (Y_2, d_2) be two metric spaces, then, $f: X \rightarrow Y$ is continuous if and only if $f^{s_1}(G)$ is open 6. in X, whenever G is open in Y.

If a double integral $I = \iint f \, dxys$ exists over a rectangle $R = [a, b; c_2, d_2]$ and if $\int f \, dy$ exists for each 7.

fixed in x in [a, b], then prove that the integrated integral $\int dx \int f dy$ exists and is equal to the

double integral.

Use cylindrical coordinated and find the volume common to the sphere $x^2 + y^2 + z^2 = 4$ and cylinder $x^2 + y^2 = zv.$

Use method of false position to find the root of the equations 3xex = 1 to 3 decimal places. OR

 $\sqrt{x}dx$ from the given data, using Simpson's rule.

(h = 0.15, 0.05

I A	1.0	1.05	1.10	4 40	1		
f/u)	-			1.15	1.20	1.25	1.30
f(x)	1.0000	1.02470	1.04881	1.07238	1.09545	1.11803	1.14018
				Group 'C'	1. 1	1	2442-24

If f(x, y), $\begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & \text{for } (x, y) \neq (0, 0) \\ 0, & \text{for } (x, y) = (0, 0) \end{cases}$

then show that f(x,y) is continuous at (0, 0) and possesses partial derivatives at (0, 0) but not

Define compact set with an example. Prove that every subset F of a metric space (X, d) is closed. 10. Also shoe by an example that every closed set may not be compact.

OR '

Let (X, d) be a complete metric space and let {Fn} be a decreasing sequence of non-empty closed subset of X such that $d(F_n) \to 0$ as $n \to \infty$, then prove that $F = \ \ \square$ F. contains exactly one point.

[20]

Attempt ALL the questions. Tick the best answers.

fdx is absolutely convergent if The improper integral 1.

If dx is convergent

is divergent

What is the interval of uniform convergence of a sequence of functions (fn)? 2.

a) open interval

fdx

b) closed interval d) half-open interva

c) half-closed interval The series $\sum_{n=1}^{a_n}$ converges uniformly in [0, 1] if

is convergent

a) ∑nx converges

b) Σnx diverges

c) Σa_n converges

d) Σ an diverges

Which of the following series is uniformly convergent for all values of θ and $\theta < r < 1$? 4.

a) Σrn cos nθ

b) $\Sigma r^n \sin n\theta$

c) \San cos20

3.

d) all of the above

If a sequence $\{f_n\}$ be defined on [0, 1] by $f_n(x) = x^n$ its limit function if given by 5.

a)
$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1 \end{cases}$$

b)
$$f(x) = \begin{cases} 0 & \text{if } 0 < x \le \\ 1 & \text{if } x = 0 \end{cases}$$

If $0 < x \le 1/2$

d) $f(x) = 1 \ \forall \ x \in [0, 1]$

Which theorem gives sufficient condition for the equality of fxy and fxy? 6. b) Lagrange's theorem

a) Euler's theorem

c) Schwarz's theorem

d) Taylor's theorem

Which of the following is not a condition for the existence theorem of the function of two variables? 7.

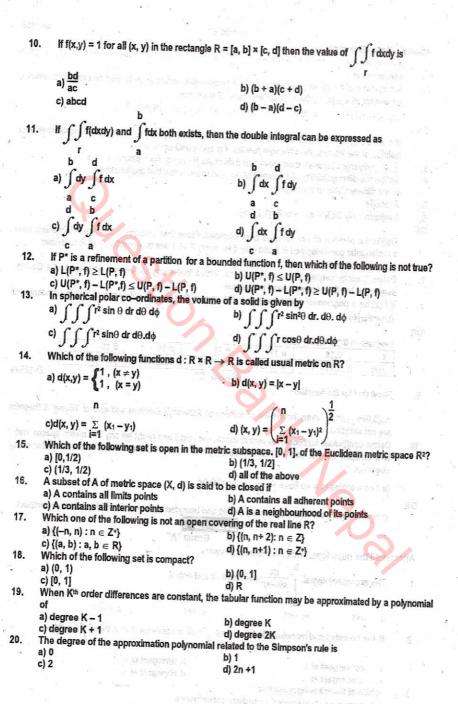
a) f(a, b) = 0b) fx and fy exists and are continuous in the neighbourhood of (a, b)

c) f, (a, b)

 $d) b = \phi(a)$

A stationary point of f is an extreme point of f if 8.

a) d2f is positive and minimum c) d2f has opposite sings alternatively b) d²f is positive and minima


The value of the limit

d) d2f keeps the same sign

9. $(x,y)\rightarrow (0,0)$ a) 0

c) 2

d) does not exists

Attempt all the questions.

- If \emptyset bounded and monotonic in $[a, \infty)$ and $\int_{\alpha}^{\infty} f dx$ is convergent at ∞ , then prove that $\int_{\alpha}^{\infty} f \emptyset dx$ is
- A sequence of functions $\{f_n\}$ defined on [a, b] converges uniformly on [a, b] if and only if for every ϵ 2. >0 and for all $x \in [a, b]$, there exists an integer N such that

 $|f_{mp}(\chi)-f_n(\chi)| \le \forall n \ge N, P \ge 1 \sim I, P(\chi)-f_{I,I}(\chi) \le cVn \sim !N, P?1.$

If a series $\sum f_n$ converges uniformly to f in an interval [a, b] and its terms f_n are continuous at α OR point x_o of the interval, then the sum function f is also continuous at x_o

 $\sum \alpha_n \chi^n$ diverges for x=x¹, then prove that it diverges for every x=x", where |x'| > |x'|.

Define the differentiability of a function of two variables. Show that the function. 3. 4. is not differentiable at the origin.

Evaluate 5.

Evaluate f f(y-2x,)dx dy, over R=[1,2,3,5]. 6.

OR

Define the partition of a rectangular parallelepiped, Prove that a bounded function is integrable over a rectangular parallelepiped R if and only if for every F,>0 there is a partition P of R such that

Define Cauchy sequence in a metric space, Prove that every convergent sequence is a Cauchy 7.

sequence, but the converse need not be true. If f (x) be a polynomial of degree: n in x, then prove that the nth difference of f(x) is constant and 8. $\Delta An^{+1}f(x)=0$.

OR

te (h 0 20 O 10 0.5)

	h 0.20, Q. 10, 0	0.15	0.20	0.25	0.30
<u> </u>			1,22140	1.28403	1.34986
f(x)	1.10517	1.16123	Group "C"	1,20400	1

2×12=24

Show that for the function 9.

 $f_{xy}(0,0)=f_{yx}(0,0)$, even though the conditions of Schwarz's theorem and also of Young' S theorem

Define continuous function on a metric space. Let $(\mathbf{x}_1\mathbf{d}_1)$ and $(\mathbf{y}_1\mathbf{d}_2)$ be any two metric spaces and fis a function from X into Y, Then prove that f is continuous at a \in X if and only if, for every, 10.

(a_n) converging to a we have $\frac{\lim_{n\to\infty} f(a_n) = f(a)$ -"-c

OR

3.

Define compact set. Prove that every closed and bounded subset of the real numbers is compact.

[20]

Attempt all the questions. Tick (\checkmark) the best answers

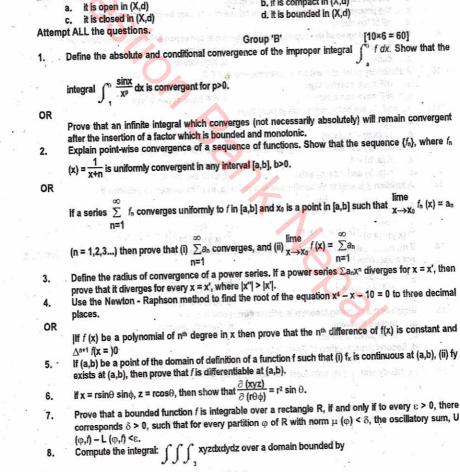
 $\int \frac{dx}{x(x-a)^n}$ converges if and only if The improper integral

d. n≠1 c. n>1

 $\int f dx$ is convergent at ∞ then If φ is bounded and monotonic in (a, ∞) and 2.

convergent at a

b. divergent at a d. divergent at ∞


convergent at ∞

Which of the following is not true?

point-wise convergence => uniform convergence

non-point-wise convergence \Rightarrow non-uniform convergence

uniform convergence => point-wise convergence all of the above 4. The interval of uniform convergence of a sequence of function $\{f_n\}$ is a. half-open interval b. open interval c. half-closed interval d. closed interval If a power series ∑a₀xⁿ diverges for x=x', then it diverges for every x=x", where 5. a. |x'|<|x"| b. |x'|≤|x"| c. |x'|>|x"| d. |x'|≥|x"| If a power series $\sum a_n x^n$ converges at the end point x=R of the interval of convergence (-R,R), then it is uniformly convergent in b. (0.R1 c. [0,R) 7. An error due to use of approximate formula is called a. round- off error b. relative error truncation error d. absolute error 8. The term "interpolation" is defined as a. the art of reading the missing values between the lines in tables the special case of process of curve fitting c. the process by which non-tabulated talues of a tabular function are estimated all of the above 9. What is the degree of the approximating polynomial corresponding to the Simpson's rule? a. linear b. quadratic cubic d. biquadratic A stationary point of f will be an extreme point of F if 10. a. d2F have positive sign b. d²F have negative sign d2F have same sign d. d2F have opposite sign 11. f_{xy} and f_{yx} are both continuous at (a,b) then a. $f_{xy} = f_{yx}$ b. $f_{xy} \neq f_{yx}$ $f_{xy}(a,b) = f_{yx}(a,b)$ d. $f_{xy}(a,b) \neq f_{yx}(a,b)$ 12. A necessary condition for f(x, y) to have an extreme value at (a, b) is a. $f_x(a, b) = 0$ b. $f_{y}(a, b) = 0$ c. $f_x(a, b)$ and $f_y(a, b)$ exist d. all of the above A function f is said to be continuous at a point (a, b) of its domain of definition if 13. a. $\lim_{x \to a} f(x) = f(a)$ b. $\lim_{x \to b} f(x) = f(b)$ c. $(x y) \rightarrow (a b) f(x, y) \neq f (a, b)$ d. (x y) - (a b) f(x, y) = f (a, b)If u₁, u₂, , u_n be n differentiable functions of n variables x₁, x₂, ... x_n then which of the following is 14. not a Jacobian? $\partial(u_1,u_2,...,u_n)$ ∂(x1, X2, Xn) d. all of the above Which of the following theorem is different from others? 15. Stoke's theorem b. Gauss's theorem Divergence theorem d. Second generalization of Green's theorem 16. $\iint_{\mathbb{R}} f dx dy$ and $\int_{\mathbb{R}} f dy$ both exist, the double integral can be expressed as

 $\mathbf{d.} \iint_{\mathbb{R}} f \mathbf{dx} \mathbf{dy} = \int_{\mathbb{R}} \mathbf{dx} \int_{\mathbb{R}} f \mathbf{dy}$

b. Is dx dy |S|R | dx dy

d. Illef dx dy slight fldx dy

b. fis continuous

d, all of the above

b. it is compact in (X,d)

If the function f of x, y is integrable on a rectangle R so is |f| then which one of the following is

Let (X,d) and (Y,d') be any two metric spaces. T function $f: X \rightarrow Y$ is said to be a homeomorphism if

A subset A of a compact metric space (X,d) is itself compact if and only if

c. $\iint_{\mathbb{R}} f dx dy = \int dy \int f dx$

IIIRf dx dy = III fldx dv

 $\iint_{\mathbb{R}} f \, dx \, dy \neq \iint_{\mathbb{R}} f \, dx \, dy$

F contains all its limit points F contains all interior points F contains all adherent points F is a nbhd of its points

f is both one-one and onto

c. f-1 is continuous

A subset F of a metric space (X,d) is said to be closed if

17.

20.

true?

x = 0, y = 0, z = 0, x + y + z = 1.Let (x,d) be a metric space and $Y\subseteq X$, then prove that a subset S of Y is open in (Y,d_Y) if and only 9. if there exists a set G open in (x,d) such that $S = G \cap Y$. OR Show that the function d defined by d $\{\{x_n\},\{y_n\}\} = \begin{pmatrix} \infty \\ \sum (x_n-y_n)^2 \end{pmatrix}$, $\{x_n\},\{y_n\} \in I_2$ is a metric on I_2 . Define compact metric space. Prove that every closed subset of a compact metric space is 10. compact. Group 'C' $[2 \times 10 = 20]$ If f_x and f_y are both differentiable at a point (a,b) of the domain of definition of a function f_x then prove 11. that $f_{xy}(a,b) = f_{yx}(a,b)$. Define complete metric space, let (x,d) be a complete metric space and y be a subspace of X. Then 12. Y is complete if and only if it is closed in (x,d) prove it. OR Let (x,d_1) and (Y,d_2) be two metric spaces, then $f:X \to Y$ is continuous if and only if $f^{-1}(G)$ is open in X, wherever G' is open in Y, prove it. Exam 2071 Group "A" 20 Attempt ALL the questions. Tick (1) the best answers. The integral | e-mx dx converges for a. n>i b. n>-1 c. n>i d. n>0 Every absolutely convergent integral is a. convergent b. conditionally convergent c. uniformly convergent d. non-convergent Which of the following is not true? uniform convergence implies pointwise convergence non uniform convergence implies non pointwise convergence pointwise convergence implies uniform convergence non pointwise convergence implies non uniform convergence The power series ' $\sum a^n x^n$ ' which converges for all values of x is called. a. region of convergence b. nowhere convergence c. everywhere convergence d. somewhere convergence The radius of convergence of the power series $1 + 2x + 3x^2 + 4x^3 + is$ 5. a. 1 C. 00 d. not exist A series of functions ∑M_n converges uniformly on [a, b] if there exists a convergent series ZMn of positive numbers such that

6.

a. $|f_n(x)| \le M_n$, for $x \in [a, b]$

b. $|f_n(x)| \ge M_n$, for all n, and $x \in [a, b]$

c. $|f_n(x)| \le M_n$, for all n, and $x \in [a, b]$

c. $|f_n(x)| \le M_n$, for all n, and $x \in [a, b]$

d. $|f_n(x)| \ge M_n$, for some $x \in [a, b]$

If a series $\sum f_n$ converges uniformly to f in [a, b] and x_0

is a point in [a, b] such that $\underset{X}{\text{lim}} f_n(x) = a_n$, $n = 1,2,\dots$ then

 b. ∑ a_n diverge a. ∑ a_n converges d. a. diverges c. a. converges A function f (x, y) is continuous at (a, b) if (x, y) ® (a, b) f (x, y) = f (a, b) c. (a, b) ® (x, y) f (x, y) = f (a, b) (a, b) ® (x, y) f (x, y) - f (a, b) Let f(x, y) is a function of two variables and $y = \phi(x)$ is the root of f(x, y) = 0 then the implicit 9. equation defined b. $\phi(x) = 0$ $a. y = \phi(x)$ $d. \phi (v) = 0$ c. x = 0 (y) Let F (x, y, z) = 0 is a function subject to the constraint G (x, y, z) = 0 then which of the following 10. condition is satisfied at stationary points? b. $F_{xx}G_{yy} - F_{xy}G_{xy} = 0$ a. $F_xG_x - F_yG_y = 0$ $d. F_{xy}G_{xy} - F_{yy}G_{xx} = 0$ $C. F_xG_y - F_yG_x = 0$ A closed point set consisting of a bounded domain plus boundary points is called 11. b, bounded domain a, region d, compact region c, compact domain If P* is refinement of a partition P then for a bounded function/, which of the following is not true? 12. b. $L(P^*, f) \ge U/(P, f)$ a. $L(P^*, f) \ge L(P, f)$ $d.L(P,f) \leq U(P^*,f)$ c. $U(P^*, f) \leq U(P, f)$ If the functions f1, f2, are integrable then which of the following is not integrable? 13. a. f1 + f2 d. If1 . f2 C. ft . f2 The jaccobian for the x = r cos θ , y = r sin θ , z = z is 14. a.r d. r cos 0 C. 12 The surface integrals taken over the opposite side of surface have 15. b. same sign a, different sign d. are negative c, are positive In any metric space, which of the following is not true? 16. a, the union of any arbitrary family of open sets is open b. The union of finite number of open sets is open c, the intersection of any arbitrary family of closed sets is closed d, the union of finite number of closed sets is closed In a discrete metric space (X, d), which of the following is not true? 17. b. intersection of open set is open a, union of open set is open d. every set is closed c. every set is open The numerical difference between the true value and approximate value is called 18. b. absolute error a. mistake d. truncation The method of false position is also known as 19. b. bisection a, methods of chords d. iteration c. Newton-Raphson Which of the following is related to Newton-Raphson Method? 20. b. $x_{n+1} = x_n - \frac{1}{f}(x_n)$

Attempt ALL the questions.

Group "B"

What is the statement for the Dirichlet's test for convergent? Use this statement to show that

dx converges for p > 0.

If f and g are positive and f (x) \leq g (x) for al x in [a, x] then prove that 2.

(a)
$$\int_{0}^{\infty} f \, dx$$
 converges if $\int_{0}^{\infty} g \, dx$ converges and a a (b) $\int_{0}^{\infty} g \, dx$ diverges if $\int_{0}^{\infty} f \, dx$ diverges

3. If a series $\sum f_n$ converges uniformly to f in an interval [a, b] and its term f_n are continuous at x_0 of the interval then the sum function f is also continuous at xo. Prove it.

OR

Prove that a series of functions $\sum f_n$ defined on [a, b] converges uniformly on [a, b] if and only if for every $\varepsilon > 0$ and for all $x \in [a, b]$ there exists an integer K such that

 $|f_{n+1}(x) + f_{n+2}(x) + + f_{n+p}(x)| < \varepsilon$ for all $n \ge K$, $p \ge 1$.

Define power series. Explain the region of convergence of the power series with example. 4.

Define differentiability of function of two variables. If a function is defined in (a, b) such that fx is 5. continuous at (a, b) and fy exists at (a, b) then prove that f is differentiable at (a, b).

OR Define implicit function with example.

If
$$u = \frac{x^2 + y^2 + z^2}{x}$$
, $v = \frac{x^2 + y^2 + z^2}{y}$, $w = \frac{x^2 + y^2 + z^2}{z}$ then show that $\frac{\partial}{\P}(x, y, z) = \frac{x^2y^2z^2}{(x^2 + y^2 + z^2)^3}$

6. -Evaluate (y - 2) dx dy, over R = [1, 2: 3, 5]

OR

Define the partition of a rectangle. Prove that a bounded fu<mark>n</mark>ction f is integrable over a rectangle R is if and only if for $\varepsilon > 0$ there is a partition P of R such that U (P, f) - L (P, f) < ε .

7. In any metric space (X, d), prove that

(i) the intersection of any arbitrary family of closed sets is closed

(ii) the union of finite number of closed sets is closed.

Evaluate $I = \int \frac{1}{1+x}$ correct to three decimal places with h = 0.125 using (i) trapezoidalrule (ii)

Simpson's rule.

Group "C"

20

20

9. Define volume integral and evaluate. Compute the volume of the solid bounded by the sphere x2 + $y^2 + z^2 = 4$ and the surface of the praboloid $x^2 + y^2 = 3z$ where the surfaces intersect at z = 1.

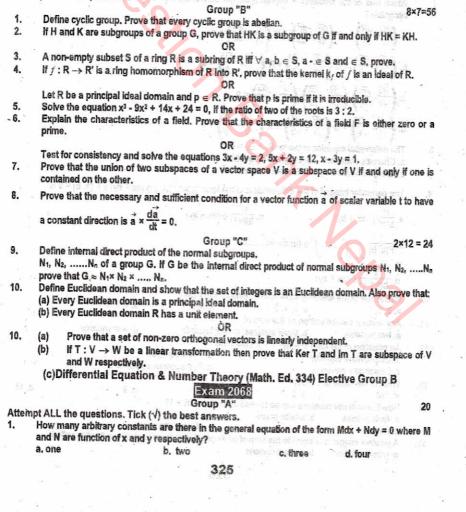
Define metric space. Show that n-dimensional space \Re^n is metric space. OR 10. Define compact set with example. Prove that every compact subset of A of a metric space is compact.

> Exam 2072 Group "A"

Attempt ALL the questions. Tick (√) the best answer.

For the Klein's four group G of elements e, a, b, c, which of the following is not true? 1. $a, a^2 = b^2 = c^2 = e$ b. ab = ba = c

```
d. G is a cyclic group
       c.bc = cb = a
       Which of the following is false?
2.
       a. every cyclic group is abelian
       b. isomorphic image of a cyclic group is not always cyclic
       c. every subgroup of a cyclic group is cyclic
        d, every group of prime order is cyclic
                             what is the value of o3?
3.
                                                          b. (1 2 3 4)
        Which of the following group is not cyclic?
4.
                                                           b. Z12×Z49
        a. Zo x Z14
                                                           d. Z15×Z28
        c. Z. x Zs
        What is the order of the alternating group A4?
5.
        a. 12
                                                           d. 8
        c. 24
        A homomorphism o : G → G' is called isomorphic if .....
6.
                                                           b. 6 is one-one and onto
         a. o is onto
                                                           d. h is into
         c. o is one-one
         IF N \triangle G, which of the following is true for all x \in G, n \in \mathbb{N}?
 7.
                                                           b_{x-1}N_{y} = N
         a. .N = N.
                                                           d, all of the above
         c. xN-1= N
         Which of the following statement is not true?
 8.
         a. every field is an integral domain
         b, a finite integral domain is a field
         c. a skew field has zero divisors
         d. an arbitrary intersection of sub rings is c subring
         A ring R is called simple if it has ......
 9.
                                                            b. proper ideals
         a. no proper ideals
                                                            d. ideals
         c. no ideals
         The ring (Z<sub>6</sub>, + ,.) of integers modulo 6 has characteristic
 10.
         a. 0
         c. 3
         x^2 + 2 \in R [X] is a minimal polynomial of .....
 11.
                                                            b. √2 over Q
          a. I \square R
                                                            d. -2 over R
          c. 2i over 93
         What is the characteristics of the field of real numbers?
  12.
                                                             b. 1
          a. 1
          c. 2
          If \alpha, \beta, \gamma be the roots of the equation x^3 + px^2 + qx + r = 0, what is the value of \alpha + \beta + \gamma?
  13.
                                                             b. -p
                                                             d. q2 - 2pr
          A square matrix A is called nilpotent of order n if ......
  14.
                                                             b. An = 0
          a. An = A
                                                             d. An = 0 but An-1 ≠ 0
          c. An-1 ≠ 0
          If P = (x_1, y_1, z_1) and Q = (x_2, y_2, z_2), what is the value of P.Q?
  15.
          a. X1X2+V1V2+Z1Z2
```


The dimension of the vector space of all 2×3 metrices over R is

a. 2 b. 3 d. 6

16.

17. If $\pi: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection mapping on xy - plane defined by

d. $\sqrt{(x_1x_2)^2 + (y_1y_2)^2 + (z_1z_2)^2}$

b. {(o, o, c) : c ∈ R}

 $\vec{b} \cdot \vec{a} \cdot \vec{a}' = \vec{b} \cdot \vec{b}' = \vec{c} \cdot \vec{c}' = 1$

 \vec{d} , \vec{a} , \vec{a} + \vec{b} , \vec{b} + \vec{c} , \vec{c} = 1

d. {(o, o, o)}

b. $\vec{f} \times \frac{d\vec{f}}{dt} = 0$

 $d. \frac{d\vec{f}}{dt} = 0$

The necessary condition for vector function \overrightarrow{f} of scalar variable t to have a constant magnitude is.

If \vec{a} , \vec{b} , \vec{c} and $\vec{a'}$, $\vec{b'}$, $\vec{c'}$ be reciprocal system of vectors then which of the following is true?

x(x, y, z) = (x, y, o), then ker π is

a. ((o, c, o) : c ∈ R)

c. {(c, o, o) : c ∈ R}

a. $\overrightarrow{f} \frac{d\overrightarrow{f}}{dt} = 0$

c. $\vec{f} \cdot \frac{d\vec{f}}{dt} = 0$

a. ∇r
c. ∇ × r
Attempt ALL the questions

a. $\vec{a} \cdot \vec{a'} = \vec{b} \cdot \vec{b'} = \vec{c} \cdot \vec{c'} = 0$

 $\overrightarrow{a} \cdot \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{b}' + \overrightarrow{c} \cdot \overrightarrow{c}' = 0$

Which of the following is not meaniful.

18.

19.

20.

If the solution of equation $P_0 \frac{d^n y}{dx^n} + P_1 \frac{dx^{n-1} y}{dx^{n-1}} + \dots P_n Y = 0$ is $Y = (C_1 + C_{2x} + C_{3x}^2 0 \dots + C_n X^{n-1})_x$ 2. mx then the nature of roots are b, real and equal a, real and distinct c. non-repeated are imaginary d. irrational and imaginary The binomial expansion of (1 + D)-2 is 3. b. 1 - 2D + 4D2 - 4D3 + a, 1 + D + D2 + D3 + d. 1 - 2D + 3D2 - 4D3 + c. 1 - 2D + 3D2 - 4D2 + ... The solution of differential equation with no arbitrary constant is 4. b. particular solution a. complete solution d. general solution c, singular solution If P + Q + 1 = in the equation $\frac{d^2y}{dy^2}$ + P $\frac{dy}{dy}$ + Qy = x then a part of complementary function is 5. d.y = xIf the auxiliary equation of differential equation $D^2 + dD^1 = 0$ is $m^2 + 4 = 0$ then its complementary 6. function C.F. is b. C.F = C1 cosex + C2 Sin e-x a. C.F = C1 cos x + C2 Sin 2x c, C,F = C1 cos 2x + C2 Sin 2x d, C,F = C1 cos 2x + C2 Sin 2x Which one of the following is condition for the differential equation Pdx + Qdy + Rdz = 0 to be 7. integrable? a. $\left(\frac{dQ}{dz} - \frac{dR}{dy}\right) + Q\left(\frac{dR}{dx} - \frac{dP}{dz}\right) + R\left(\frac{dP}{dy} - \frac{dQ}{dx}\right) = 0$ b. $\left(\frac{\partial Q}{\partial x} - \frac{\partial R}{\partial y}\right) + Q \left(\frac{\partial R}{\partial x} - \frac{\partial R}{\partial x}\right) + R \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$ $c.\left(\frac{\partial Q}{\partial x} - \frac{\partial R}{\partial y}\right) \left(\frac{\partial R}{\partial x} - \frac{\partial R}{\partial x}\right) \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$ $d.\left(\frac{\partial^2}{\partial y} - \frac{\partial Q}{\partial x}\right) + Q\left(\frac{\partial R}{\partial x} - \frac{\partial^2}{\partial x}\right) + R\left(\frac{\partial Q}{\partial x} - \frac{\partial R}{\partial y}\right) = 0$ The differential equation in the for P, + Q, = R is 8. a. Charpit's equation b. Largrage's equation c. Monge's equation d. Clairaut's equation The particular integral of the differential is in the form $\frac{1}{(bD + aD')^n} \phi$ (ax + by) if F (a, b) = 0 is 9. b. $\frac{x^{r+1}}{b(r+1)} \phi (ax + by)$ $a.\frac{x^n}{bnn!}\phi(ax+by)$ $c.\,\frac{1}{F(a,\,b)}\,\,\int\,\,\dots\dots\,\,\int\,\varphi\,(u)\,du\,du\,\dots\dots du$ d. $\frac{x^r}{b(r+1)} \phi (ax + by)$ Which one of the following triple is the Pythagorean triple? 10. d. 1, 2, 3 c, 5, 6, 7 b. 3. 4. 5 Any prime p can be written as the sum of 11. d. one squares b. three squares c. four squares a. two squares An equation of the form $x^2 - dy^2 = 1$ is called the 12. b. Pell's equation a. Diophantine equation d. Pythagorean equation c, Lagrange's equation What is the value of \(\tau (180)? \) 13. c. 9 How many prime numbers can be formed of the type 4K + 1? 14. b. infinite prime a. finite primes d, only one prime c. no prime A positive integer n is equal to the sum of all its positive divisors excluding n itself in called 15. b. perfect number a. prime number

c. rational number d. triangular number

	If P be an odd prime and a, b, be integer which are relatively prime to p, then which one of the
	following symbols is not Legendre symbols?

a. if
$$a = b \pmod{p}$$
 then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$
b. $\left(\frac{a^2}{p}\right) = 1$
c. $\frac{a}{p} = a^{\frac{p-1}{2}} \pmod{p}$
d. $\left(\frac{1}{p}\right) = -1$

The number in the form of $F_n = 2^{2N} + 1$, $n \ge 0$ is called a. Mersenne numbers b. Perfect numbers

c. Fermat numbers d. Square numbers

18. Which one of the following sequence is Fibonacci sequence?

a. 1, 2, 3, 4,..... b. 1, 1, 2, 3, 5, 8,.....

c. 2, 4, 8, 16,..... d. 1, -1, 1, -1, 1, -1,.... 19.

If n has a primitive root of r and indidenote the index of a relative to r then which one of the following relation is not correct?

a. ind $ab \equiv ind a + ind b \pmod{\phi(n)}$

b. ind $a^k \equiv k$ ind a (mod $\phi(n)$) for k > 0

c. ind $1 \equiv 0 \pmod{\phi(n)}$ ind $r \equiv 1 \pmod{\phi(n)}$

d. ind ab = ind a. ind b (mod φ(N))

Let P be an odd prime and gcd (a, P) = 1. If the congruence x2= a(mod) has a solution then a is said 20.

a. quadratic reciprocity

b. quadratic residue

c. quadratic non residue

d. quadratic quotient

Attempt ALL the questions.

Group 'B'

Time: 3hrs 8×7=56

2×12=12

. 1. Distinguish between general and singular solution. Find the singular and general solution of v = $\frac{dy}{x} + \frac{1}{2} \frac{dx}{xy}$

Solve the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y$ given that $x + \frac{1}{x}$ is one integral. 2.

OR

17.

Solve the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + y \cos^2 x = 0$

Solve 3.

$$\frac{dx}{dt} + 4x + 3y = t$$

$$\frac{dx}{dt} + 2x + 5y = e^t$$

Define complete and particular integral and solve Px + qy + Pq = 0 by Charpit's method. 4.

Solve (q + 1) = (p + 1)t by Monge's method.

Define primitive root of n. for K ≥ 3, prove that the integer's 2K has no primitive roots. 5.

6. Define quadratic residues and quadratic non residues. Prove that if p is an odd prime then p=4 $\binom{7}{q}=0$. Hence show that there are precisely $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic non-

residues of p. 7. Prove that there are infinitely many primes of the form 8K-1.

Define Pythagorean triple and also prove that the area of a Pythagorean triangle can never be equal to a perfect integral.

8. Define Fibonacci numbers. Prove that the greatest divisor of two Fibonacci numbers is again a Fibonacci number, specifically $ged(u_m,u_n) = u_d$ where d= ded(m,n)

Group 'C'

9. Solve (a) $r + s - 6t = y \cos x$.

- (a) Find the general solution of the equations
- $D^2 5DD^2 + 4D^{12}z = \sin(4x+y)$
- (b) Solve the partial differential equation

$$(D^2 - 2aDD^1 + a^2D^{12})z = f(y+ax)$$

(a) If p and q are distinct odd prime numbers then prove that 10.

$$\begin{pmatrix} \frac{p}{q} \end{pmatrix} \begin{pmatrix} \frac{q}{p} \end{pmatrix} = (-1)^{\left(\frac{p-q}{2}\right)\left(\frac{q+p}{2}\right)}$$

(b) For any n > 1, the positive integers less than n and relative prime to n is $\frac{1}{2}n \phi(n) = \sum k$

$$\frac{1}{2}n\ \phi(n)=\sum k$$

· Gcd(k.n)

1≤k<n

Exam 2069 Group "A'

20

Attempt all the questions. Tick ($\sqrt{}$) the best answers.

What is the order and degree of $\frac{d^2y}{dv^2}$ = 5y ÷ 3? 1.

> a. degree 1, order 1 c, degree 2, order 1

b. degree 2, order 2

d. degree 1, order 2

The homogenous differential equation can be solved by putting 2.

b. y=c

y=vx

d. y=x2

IF Q e2x V, where V is a function of x then the particular integral of differential equation is in the

$$a. \frac{1}{\int (d+a)} \vee$$

- The solution of differential equation with no arbitrary constants is

complete solution singular solution

b. particular solution d. general solution

If y=eax is a part of complementary function of the linear differential equation of second order then 5. which of the following relation is true?

a. P+Q+1 c. P+Qx

b. 1-P+Q=0 d. 1+ $\frac{P}{a}$ + $\frac{P}{a^2}$ = 0

6. The two subsidiary equation of the equation

Rr +Ss +Tt=V in solving Monge's method are

- a, R,dx2+Sdx,dy+Tdy2 0 and Rdgdx+Tdpdy-Vdxdy=0
- b. Rdy2-Sdex.dy+Tdx20 and Rdpdy+Tdgdx-Vdxdy=0
- c. R(ly2+Sdxdy+TdX20 and Rdpdy+Tdgdx-Vdxdy=0
- d. Rdx2+Sdx.dy-Tdx20 and Rdpdy-Tdgdx+Vdsdy=0
- Which one of the following is equal to d[108(X2+y2)] 7.

a. $\frac{1}{2}\log(x^2 + y^2)$

The complementary function of (D2+2DD'+d'2)z=0 is

a. $\phi_1(y - x) + \phi_2(y + x)$

 $b.\phi_1(y + x) + \phi_2(y + x)$

c. $\phi_1(y + x) + x\phi_2(y + x)$

d. $\phi_1(y-x) + \phi_2(y-x)$

The normal form equation

a.
$$\frac{d^2y}{dx^2} + \left[Q - \frac{1}{4}p^2 \frac{1}{2} \frac{dp}{dx} \right] = 0$$

b. $\frac{d^2y}{dx^2} + p \left[Q - \frac{1}{4}p^2 \frac{1}{2} \frac{dp}{dx} \right] = 0$

c. $\frac{d^2y}{dx^2} + p \left[Q - \frac{1}{4}p^2 \frac{1}{2} \frac{dp}{dx} \right] = Xe \int_{-2}^{2} \frac{dx}{dx}$

d. $\frac{d^2y}{dx^2} + p \left[Q - \frac{p^2}{4} - \frac{1}{2} \frac{dp}{dx} \right] = e \int_{-2}^{2} p^{dx}$

Which of the following is the particular integral $\frac{1}{D + D^2}e^{2x + 3y}$?

a. $\frac{1}{25}e^{2x + 3y}$

b. $\frac{1}{5}e^{2x + 3y}$

Which of the following is the complementary equation of $\frac{\partial^2 u}{\partial x^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0$?

a. $\phi_1(y - ax) = \phi_2(y + ax)$

b. $\phi_1(y + ax) + x\phi_2(y + ax)$

c. $\phi_1(y - ax) + \phi_2(y - ax)$

What is the value of $\phi_1(00)$?

a. 100

b. 10

c. 40

The value of $\phi_1(00)$?

a) 10

c) 20

d) 5

In the language of cryptography, the codes are called a) Plain text

c) ciphers

What is the value of $\phi_1(180)$?

a) 18

c) 180

if P is the prime and pla then which one of the following relation is true?

a) $a^{p-1} = 1(Mod P)$

c) $a^{p-1} = p(Mod a)$

d) $a^{p-1} = 1(Mod P)$

b) 125000

17. What is the gcd of (250, 500)?

c) 250

10.

11.

12.

13.

14.

15.

16.

d) 500

18. If gcd (a, n) = 1 and a is of order ϕ (n) modulo n then a is a) square root

c) primitive root

b) composite number d) prime number

Which of the following ratio is called Golden ratio?

a) $\frac{1+\sqrt{5}}{2}$

b) $\frac{1-\sqrt{5}}{2}$

If P is a prime and d|(P - 1), then how many solutions are there in $x^d - 1 = 0$ (MOd P)?

c) 1

b) 0 d) d

Attempt all the questions.

Group "B"

8×7=56

Define modal locus with suitable diagram. Obtain the general and singular solution of y²-2pxy+p²(x²-1. . 1)m2.

2. Solve the differential equation.

$$x\frac{d^2y}{dx} + (1-x)\frac{dy}{dx} - y = e^2$$

 $x \frac{d^2y}{dx} + (1-x) \frac{dy}{dx} - y = e^2$ Solve the differential equation by changing into normal form: 3.

$$\frac{d^2y}{dx} + (1-x)\frac{dy}{dx} - y = e^2$$

Solve by operational method:

Solve: 4.

OR

Define regular singular points and irregular singular points in differential equation and find the solution in series of

$$\frac{d^2y}{dx} + (1-x)\frac{dy}{dx} - y = e^2$$

If n is a positive integer and gcd (a,n)1 then $\alpha \phi_{(n)} \equiv 1 (MOd \ n) Prove \ it.$ 5. If P is a prime and K>0, prove that φ(pk)-pk-pk-1.

6. OR

For each positive integer n≥1, prove that n= The sum being extended over all positive divisors of n.

Let P be an odd prime and gcd (a,p)=1, prove that a is a quadratic 7.

Residue of P if and onlyif

Prove that the radius of the inscribed circle of a Pythagorean triangle is always an integer. 8.

Solve the partial differential equation 9

(a) (D2+DD1+D1-1)z=sin (x+2y)

(b) r=a2t by Monge's method.

OR

Find the general surface satisfying t=6x³y, containing the two lines y=0=z, y=1=z.

(a) Prove that there are infinitely many primes of the form 4K+1. 10.

(b) Prove that the greatest common divisor of two Fibonacci numbers is again a Fibonacci number.

i.e. Gcd(um2,un)ud where d gcd (m,n).

Exam 2070 Group "B"

8×7=56

Define Clairaut's equation with an example, find the general and singular solution of $P^2 + px - y = 0$.

Solve the differential equation. 2.

$$x^2 \frac{d^2y}{dx^2} - (x^2 + 2x) \frac{dy}{dx} + (x + 2) y = x^3 e^x$$

Solve $\frac{d^2y}{dx^2}$ + $(\tan x - 3\cos x)\frac{dy}{dx}$ + $2\cos^2 x$.y = $\cos^4 x$. OR.

Solve $\frac{d^2y}{dx^2} - 3x - 4y = 0$, $\frac{d^2y}{dt^2} + x + y = 0$ 3

Define complete and particular integral and solve Pq = px + qy by using Charpit's method. 4.

Solve $x^2r + 2xys + y^2t = 0$ by monge's method. OR.

Define number theoretic function. How is the number theoretic function multiplicative? Prove that 5. the function τ and σ are both multiplicative.

If $n \ge 1$ and gcd (a, n) = 1 then prove $a^{(n)} = 1$ (mod n). 6.

Define Euler's phi-function with an example. Prove that, if P is prime and k > 0 the ϕ (Pk) = Pk - Pk-1 7.

 $= P^k \left(1 - \frac{1}{P} \right).$

Define prime number with example. Prove that there are infinitely many primes of the from 4k + 1.

Define inscribed circle. Prove that the radius of inscribed circle of a Pythagorean triangle is always OR. an integer. 2×12=24

Group "C"

Solve 9.

(a)
$$\frac{dx}{x(y^2-z^2)} = \frac{dy}{y(z^2-x^2)} = \frac{dz}{z(x^2-y^2)}$$

(b) $\frac{yzdx}{y-z} = \frac{yxdy}{z-x} = \frac{xydz}{x-y}$.

OR, (a)
$$\left(\frac{d^2y}{dx^2} + y\right) \cot x + 2 \left(\frac{dy}{dx} + y \tan x\right) = \sec x$$

(b) $(r-2s+t) = \sin(2x+3y)$.

Define Pythagorean triples with an example. Prove that all solution of the Pythagorean equation x2+ $y^2 = z^2$ satisfying the condition gcd (x, y, z) = 1, 2|x, x > 0, y > 0, z > 0 are given by 10.

Group "A"

Attempt ALL the questions. Tick (√) the best answers.

The differential equation is in the form $M_{dx} + N_{dy} = 0$ and the equation is homogenous with $M_x + N_y$ ≠ 0 then its integrating factor is in the form

a. M._N.

d. eff(x)dx

20

If the solution of the equation $P_0 = \frac{d^ny}{dx^n} + P_1 = \frac{d^{n-1}y}{dx^{n-1}} + p_2 = \frac{d^{n-2}y}{dx^{n-2}} + \dots = 0$ are real and equal then its . 2. solution is in the form

a. $y = C_1 e^{m_1 x} + C_2 e^{m_2 x} + \dots + C_n e^{m_n x}$

b. $y = (C_1 + C_2X + C_3X^2 + + C_nX^{n-1}) e^{mtx}$

c. $y = (C_1 \cos \beta x + C_2 \sin \beta x) e^{ax}$

d. $y = C_1 e^{ax} \sinh(x \sqrt{\beta + c_2})$

What are the degrees and order of the differential equation $\left(\frac{d^2y}{dx^2}\right)^2 = -\frac{d^2y}{dx^2}$ 3. a. order 1, degree 2 b. order 2. degree 1

c. order 2. degree 2

d. order 2, degree 0

What is the binomial expansion of (1 + d)-1? 4.

a. 1 - D + D2 - D3 + c. 1 + D - D2 - D3 +

b. 1 + D + D2 + D3 + d. 1 - 2D + 3D2 - 4D3 +

What is the condition for the integrability of the total differential equation of Pdx + Qdy + Rdz = 0? 5.

a. P $\left(\frac{\partial Q}{\partial x} - \frac{\partial R}{\partial y}\right) + Q \left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial x}\right) + R \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}\right) = 0$

- b. P $\left(\frac{\partial Q}{\partial x} \frac{\partial Q}{\partial x}\right) + Q \left(\frac{\partial P}{\partial x} \frac{\partial R}{\partial x}\right) + R \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) = 0$
- c. P $\left(\frac{\partial R}{\partial y} \frac{\partial Q}{\partial x}\right) + Q \left(\frac{\partial P}{\partial x} \frac{\partial R}{\partial x}\right) + R \left(\frac{\partial P}{\partial y} \frac{\partial Q}{\partial x}\right) = 0$
- d. P $\left(\frac{\partial R}{\partial y} \frac{\partial Q}{\partial x}\right) + Q \left(\frac{\partial P}{\partial x} \frac{\partial R}{\partial x}\right) + R \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) = 0$
- What is the value of d $\left(\tan^{-1}\left(\frac{y}{y}\right)\right)$? 6.

a. x dy - y dx

c. $\frac{x \, dy - y \, dx}{x^2 + y^2} d \cdot \frac{x \, dx + y \, dx + z \, dz}{x^2 + y^2 + z^2}$

If Q = eax V where V is a function of x, then the particular integral of differential equation is in the 7.

c. $\frac{1}{f(D)}V$ d. $\frac{1}{f(D+a)}V$

If P + Qx = 0 then a part of complementary function of the equation $\frac{d^2y}{dx^2} + P \frac{dy}{dx} + Qy = X$ is 8.

a. y = x

9. What is the name of differential equation which is in the form $P_p + Q_p = R$ where P_p , $Q_p = R$ are function of x, y, z? a. Pell's equation

b. Fermat equation

c. Larange's equation

d. General equation

10. What are the pair of two subsidiary equation of Rr + Ss + Tt = V by solving Monge's Method?

a. Rdx2 + Sdxdy + Tdy2= 0; Rdpdy + Tdp.dy - Vdxdy = 0 b. $Rdy^2 - Sdxdy - Tdx^2 = 0$; Rdpdy - Td.qdx - Vdxdy = 0

c. Rdy2 - Sdxdy + Tdx2= 0; Rdpdy + Tdp.dy - Vdxdy = 0

d. $Rdx^2 + Sdxdy - Tdx^2 = 0$; Rdpdy - Tdq.dx + Vdxdy = 0

```
If \sigma (n) denotes the sum of positive divisors of n, then what is the value of \sigma (15)?
11.
                                  b. 4
                                                            c. 24
       If n = 30, a = 11 then which of the following relation is true?
12.
                                                            b. 11^{6(30)} \equiv 30 \pmod{11}
       a. 11^{\circ(30)} \equiv 1 \pmod{30}
                                                            d. 11^{\phi(30)} \equiv -1 \pmod{30}
       c. 11^{\phi(30)} \equiv 0 \pmod{30}
       If the integer a has order K modulo n and h > 0 then what is the order of an modulo n?
13.
                                  b.k
       a. ged(h,k)
        For k \ge 3, how many primitive roots does 2^k has?
14.
        If P and q are distinct odd prime then what is the value of \binom{P}{q} \binom{q}{P}?
15.
                                b. 1
        a. 0
        Let a be an odd integer then how many solution are there of x2 = a (mod 2)?
16.
        In the language of cryptography the codes used to represent plain text is called
17.
                                                                                            d. ciphers
                                                               c. Plain text
                                b. cipher text
        Which of the following is Fermat's last theorem?
 18.
                                                                b. xn = yn = zn Where n = 2
        a. x^n = y^n = z^n Where n > 2
                                                                d. all of the above
        c. xn = yn = zn Where n < 2
        How many solution does Diophantine equation x^4 + y^4 = z^2 has in positive integers x, y, z?
 19.
                                                                c. 2
                                b. 1
        The set of numbers is in the form 1, 1, 2, 3, 5, 8, 13, ..... is ....
 20.
                                b. Mersenne number
         a. Fermat number
         c. Fibonacci number d. Prime number
                                                   Exam 2071
                                                                                                                20
 Attempt ALL the questions. Tick (√) the best answers.
         How many independent variables are there in an ordinary differential equation?
                                                                b. 1
         a. 0
                                                                 d. 3
         c. 2
         The integrating factor (I.F) of the equation Mdx + Ndy = 0 where M_x + N_y \neq 0 is
 2.
          a. M. - N.
                                                                 d a fiy dy
          c. e f(x)dx
          The binomial expansion of (1 + D)-1 is
  3.
                                                                 b. 1 + D2 + D3 + .
          a. I + D + D2 + D3+ + .....
                                                                 d. 1 + 2D + 3D2 + .....
          c. 1 - D + D2 - D3 + .....
          The differential equation in the form y = px + f(p) with p = \frac{dy}{dx} is .......
  4.
                                                                 b. general equation
          a. homogenous equation
                                                                 d. partial equation
          c. Clairaut's equation
          The locus of points of intersection of the consecutive curves of the system which are obtained by
  5.
          assigning different values of c in \phi(x, y, c) = 0 is
                                                                  b. the parabola
          a. curvature
                                                                  d. hyperbola
          c, the envelope
          If P + Qx = 0 then a part of complementary function of the equation \frac{d^2y}{dx^2} + P \frac{dy}{dx}
  6.
           a. y = x
                                                                  d. e-x
           C. ex
          The Monge's method of solving the equation is in the form Rr + Ss + Tt = V where R, S, T & V are
   7.
           functions of x, y, z, p and q then the value of r is given by
```

```
An equation of the form Pdx + Qdy + Rdz = 0 where P, Q, R are functions of x, y, z is known as
  8.
         a. partial differential equation
                                                             b. total differential equation
         c. ordinary differential equation
                                                             d. general differential equation
  9.
         The complementary function of the partial different equation (D^2 + 2DD' + D'^2)z = 0 is the form
         a. \phi_1 (y - x) + \phi_2 (y + x)
                                                             b. o (y + x) + x o (y + x)
         c. \phi_1(y + x) - \phi_2(y + x)
  10.
         The complementary function of r - s - \sigma t = xy is
         a. \phi_1 (y + 3x) + \phi_2 (y + 2x)
                                                             b. \phi_1(y+x) + \phi_2(y-x)
         c. \phi_1(y-x) - \phi_2(y+x)
                                                             b. \phi_1(y + 3x) + \phi_2(y + 2x)
  11.
         Any function whose domain is the set of positive integer is called
         a. objective function
                                                            b. definite function
         c. number theoretic function
                                                             d. numeric function
        Which one of the following pair of numbers are relatively prime?
  12.
         a. 2.4
                                                            b. 5, 15
        c. 3,9
 13.
        What is the value of 6 (5)?
        a. 4
                                                    1000 b. 5
        c. fi
 14.
        The value of S \( \phi \) (d) is
        a. 10
        c. 20
        In cryptograph, the process of converting from plain text to ciphertext is called
 15.
        a. encrypting
                                                            b. plain text
        c. ciphers
                                                                          r sketakus avlad. 1919
                                                            d. decrypting
 16.
                                           = 0 then how many quadratic residues are there?
        C. p
17.
       Which
                                                  numbers is not the form of odd prime?
       a. 8K+1
                                           mainupe juictoreb. 8K+3 a served bas tolera and as tentile
        c. 8K+5
                                                           d. 8K+4
18.
       The number which in the form M_n = 2^n - 1, n > 1 are called
       a. Fermat numbers
                                                           b. mersenne numbers
       c. prime numbers
                                                           d. composite numbers
       Which one of the following Fermat numbers is divisible by 641?
       a. F
                                                           b. Fa
       c. F4
                                                           d. Fa
20.
       What are the degrees and order of the differential equation
       a. order 1. degree 2
                                                           b, order 2, degree 1
       c. order 2, degree 2
                                                           d. order 2, degree 0
Attempt ALL the questions.
      Define singular solution. Find the singular solution of y
```

Solve the differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx^2} - 9y = 0$ 2. An aquation of the form Prix - City + Ritz = 6 whose P a vartiai differential equation Solve the differential equation $x^2 \frac{d^2y}{dx^2} - (x^2 + 2x) \frac{dy}{dx} + (x + 2) y = x^2 e^x$. Test the condition of condition of integrability and solve $(x^2 + yz) dx + (z^2 + zx) dy (y^2 - xy) dz = 0$ The complementary business Solve r + (a + b) s + abt = xy by Monge's method. Prove that the function τ and σ are both multiplicative functions. 5. If n is a positive integer and gcd (a, n) = 1 then prove that a the second (Mod n) convenience of the provenience of the proven 6. Prove that there are infinitely many primes of the form 4K + 1. 7. Define perfect number with an example. Prove that if $2^k - 1$ is a prime (k > 1) then $n = 2^{k-1}(2^k - 1)$ is perfect and every perfect number is of this form. Define pythagorean triple and also prove that the area of a Pythagorean triangle can never be equal 8. to a perfect integral. 2×12=24 (a) Define particular integral and solve 9. $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} - 3\frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} = xy + e^{x+2y}$ (b) Solve: (D3 - 4D2D1 + 4DD12) u = cos (y + 2x). Find the surface satisfying $t = 6x^3y$, containing the two lines y = 0 = z, y = 1 = z. 10.(a) Define quadratic residue and quadratic non-residue of odd prime p. Let P be an odd prime and gcd(a, p) = 1. Prove that a is a quadratic residence of p is and only if = 1(ModP) (b) Prove that if a has order Kmodulo n then at = at (Modn) if and only if $l \equiv j \pmod{K}$ Exam 2072 Group "A" Attempt ALL the question. Tick (√) the best answers. What is the order and degree of the differential equation The number water at this torns his way - 7 m a. Fermat numbers b. degree 1, order 2 a. degree 1, order 1 d. degree 2, order 1 c. degree 2, order 2 The solution which is obtained from the general solution by giving some particular values to arbitrary 2. constants is called? b, general solution a, particular solution 20. What are the domeon and

d. general integral c. particular integral

What is the expanded form of (1 + D)-2? 3. b. 1 + 2D + 3D2 + 4D3 Betasb . 1 18010 .6 a. 1 - 2D + 3D2 + d. 1 - D + D2 + D3 S eargon & rebte .5 c. 1 + D + D2 + D3 +

The locus of ultimate point of intersection of consecutive curve is called 4. b. nodal locus a, cuspidal locus

d. envelope

The differential equation $\frac{d^2y}{dx^2} + P \frac{dy}{dx} + Qy = X$ and P + Qx = 0 then who is a part of complementary 5. function?

The process of changing cipher text back to plain text is called 16. a. decrypting b. ciphering c. enciphering d. encrypting 17.

The number in the form $F_n = 2^{2n} + 1$, $n \ge 0$ is a. Prime number

b. perfect number d. Mersunn number

c. Fermat number 18. An odd prime p is expressible as a sum of two squares if and only if

a.
$$P \equiv 1 \text{ (Mod 2)}$$
 b. $P \equiv 1 \text{ (Mod 3)}$ c. $P \equiv -1 \text{ (Mod 4)}$ d. $P \equiv 1 \text{ (Mod 4)}$
19. How many incongruent solution does $x^3 \equiv 11 \text{ (Mod 19) have?}$

b. 1 a. 0 d. 3

c. 2

Which of the following is not the form of an odd prime? 20. a. 8k + 1

b.8k + 3

c. 8k + 4

d. 8k + 5

Attempts ALL the questions.

Group "B"

4. Da+Da+Da+

read a top consplete inter

function where demand is the ne

The process of charging elements the seasons off?

ति स्वास्तिक विकास कि है। जिल्ला हो के देश र ते, तर है के

Define general and singular solution. Find the general and singular solution of the equation y = 1. $x \frac{dy}{dx} + \frac{1}{2} \frac{dx}{dy}$

The board is a side of the other amade if it Solve: $x^2 \frac{d^2y}{dv^2} + x \frac{dy}{dv} - 9y = 0$ given that $y = x^3$ is a solution. 2.

Solve: $\frac{d^2y}{dy^2}$ + $\tan x \frac{dy}{dy}$ + $y \cos^2 x = 0$. 3.

Find the series solution of the equation $(1 - x^2) \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 0$.

Solve the partial differential equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 12 (x + y)$ 4. OR (3.3) estant incremoleces of a 25%

Find the complete integral of $p(q^2 + 1) = q(z - b)$ by Charpit method. If P is a prime and d/p-1 then prove that there are exactly $\phi(d)$ in congruent integer having d mod p.

5. Let the integer 'a' have order k modulo n then prove that 6. en supplied to a a fill of it is the national and ories of

 $a^h \equiv 1 \pmod{n}$ if and only if k/h.

OR

Prove that the function ϕ is multiplicative.

- Define primitive root and also find the primitive root of P = 41. 7.
- If P is an odd prime then prove that $\sum {a \choose p} = 0$. 8.

Group "C"

Solve (a) $\frac{d^2y}{dx^2} - 2x^2 \frac{dy}{dx} + 4xy = x^2 + 2x + 2$ in power of x. 9.

(b) P tan x + q tan y = tan z.

Solve r - 2s + t = sin (2x + 3y) by Monge's method.

Define a finite continued fraction and prove that any rational number can be written as a 10. finite continued fraction.

Purpos Electrodelect retroducte years lead the R think I book service also as at F N

i conju a fe il made sur co libilos como seni meni regentir libo da est a fel.

i decuest i sempe cet to mue e se elimentese di q energibio alli

Define Fermat number. Prove that the Fermat number F₅ is divisible by 641. (b)

redonno rocheu il